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1 Introduction

When agents do not have full information and rational expectations, macroeconomic

outcomes are usually inefficient. How should policymakers respond to this problem?

A traditional strategy would be to make assumptions about agents’ biases when

forming expectations, embed them in a structural macroeconomic model, and then

calculate the policy rule that would maximize some welfare criterion. With this

approach, the information costs and risk of specification error are high. In this paper,

I show that there is a simpler alternative.

I demonstrate that the optimal policy in a general class of models is determined

by a sufficient statistic: the belief distortion, i.e. the ex ante predictable forecast

error made by agents without full information rational expectations (FIRE). If the

macroeconomy satisfies a technical condition – sentiment spanning – then the optimal

policy rule is linear in the belief distortion. The condition is satisfied when the

policymaker has “enough” policy tools to offset all the channels through which beliefs

distort decisions.

The optimal policy rule is also semi-structural. In general, the optimal policy

can be implemented without knowing exactly how agents form expectations. This is

valuable, because while there is strong evidence that agents do not precisely follow

rational expectations, there is no consensus on how they do form expectations. More-

over, the policymaker does not need to know the full economic model. In order to

calculate the policy rule, they only need to be able to measure belief distortions, and

to know how belief distortions and policy instruments enter a subset of equilibrium

conditions.

If the sentiment spanning condition is not satisfied, the policymaker’s problem

becomes harder. In this case, the optimal policy rule has two components: the belief

distortion component and an economic distortion component. The belief distortion

remains a sufficient statistic for the first component. And while the second com-

ponent requires knowledge of the full macroeconomic model, I prove that it exactly

follows the policy rule that would be optimal in the rational expectations version of

the model. Thus an optimizing policymaker would need to calculate this second com-

ponent anyways, and their additional response to non-rational expectations remains

summarized by the belief distortion sufficient statistic.

To demonstrate the implications and tractability of this approach, I proceed to
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calculate optimal policy in several examples. First, I study a behavioral RBC (BRBC)

model. The optimal policy is for capital taxes to move proportionately to belief

distortions about utility-adjusted returns on investment. If agents mis-forecast future

returns too high, or future marginal utility too low, then the capital tax should

increase to discourage investment.

Next, I study behavioral New Keynesian models with and without the sentiment

spanning condition. Optimal monetary policy is to raise interest rates when agents

misperceive the economy as running “too hot”: if agents mis-forecast future income

too high, or future inflation too high, then monetary policy should contract. Notably,

this is not what central banks do. Adams and Barrett (2024) show that the reverse is

true: after a shock raising these belief distortions, the Federal Reserve lowers interest

rates.

Lastly, I consider extensions to the baseline environment. First, I consider the

possibility that policymakers cannot directly observe the belief distortion, perhaps

because surveys measure expectations with error or because the estimates of the

rational expectations are misspecified. The paper’s main conclusions are robust to

these concerns: the policymaker’s nowcast replaces the belief distortion in the optimal

policy rules. Second, I abstract from standard behavioral expectations and allow the

expectation operator to be determined endogenously in a way that depends on the

policy. This endogeneity does not change the main conclusions, although the theorem

guaranteeing existence and uniqueness of the optimal policy no longer applies.

This paper builds on a large literature studying optimal policy in models without

rational expectations. Throughout, I primarily focus on behavioral expectations as

the generator of belief distortions. Recent research has adopted a variety of behavioral

expectations that fit in this paper’s framework in order to study optimal monetary

policy, including sticky information (Woodford, 2010a), heterogeneous expectations

(Di Bartolomeo, Di Pietro, and Giannini, 2016), heuristics (Hommes, Massaro, and

Weber, 2019), cognitive discounting (Gabaix, 2020), and level-k thinking (Iovino and

Sergeyev, 2023). But FIRE can be broken by relaxing full information as well, and

the theoretical results also apply to some types of information frictions.1

The paper is organized as follows. Section 2 lays out the general framework and

1A voluminous literature studies optimal policy when agents have incomplete information. Lucas
(1972) is seminal, but related recent work on monetary policy includes Adam (2007), Nimark (2008),
Lorenzoni (2010), Baeriswyl and Cornand (2010), Paciello and Wiederholt (2014), Angeletos and
La’O (2019), Benhima and Blengini (2020), and Angeletos, Iovino, and La’O (2020).
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notation. Section 3 derives the optimal policy when the first-best equilibrium is

achievable; Section 4 considers the case where it is not. Section 5 derives optimal

policies in several examples. Section 6 explores the model extensions. Section 7

concludes.

2 A General Macroeconomic Model with Behav-

ioral Expectations

This section introduces the general class of behavioral models and policies studied in

this paper, and defines notation.

2.1 The General Model

Consider a general linear dynamic stochastic macroeconomic model of the following

form. Xt =

(
XK

t−1

XC
t

)
is a n× 1 vector of endogenous variables. nK of the variables

are predetermined state variables XK
t−1, while nC = n− nK are control variables XC

t .

Yt is a vector of exogenous stochastic processes that are realized at time t; Yt = Y (L)ωt

is a moving average in the exogenous white noise ωt. The equilibrium conditions of

the model are represented as a single matrix equation:

BX1Eb
t [Xt+1] = BX0Xt +BY Yt +BGGt (1)

BX0, BX1, and BY are all matrices encoding the equilibrium conditions of the model.2

Eb
t [Xt+1] denotes a behavioral expectation operator that forecastsXt+1 conditional

on information available at time t. The information set is the history {Yt−j, Xt−j, ωt−j}∞j=0.

The superscript b indexes the type of behavioral expectations. When written without

a superscript, Et[·] indicates the rational expectation. The state variable component

of Xt+1 is known exactly at time t, so the expected vector Eb
t [Xt+1] represents

Eb
t [Xt+1] =

(
XK

t

Eb
t

[
XC

t+1

] )
2Appendix C demonstrates that this representation nests more complicated behavioral models

where additional objects appear inside the expectation operator.
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for any form of expectations.

Adams (2023a) presents the technical details of the general behavioral opera-

tor Eb
t [·], and explores its theoretical properties. The paper works through exam-

ples, showing how the operator nests many forms of behavioral expectations, includ-

ing forward-looking forms such as diagnostic expectations (Bordalo, Gennaioli, and

Shleifer, 2018), backward-looking heuristics such as adaptive expectations (Cagan,

1956), and simple information frictions with noisy signals. It allows for heterogene-

ity such as in sticky information models (Mankiw and Reis, 2002), so long as the

average forecast is what enters the linearized equilibrium conditions. The operator

does not necessarily allow for information frictions with endogenous noise, because

while expectations are endogenous, the expectation operator Eb
t [·] is assumed to be

exogenous to policy. However, Section 6.2 relaxes this restriction, and allows the

expectation operator to be endogenously determined; the main conclusions regarding

optimal policy still hold.

Gt is the vector of policy instruments, such as interest rates, government spending,

taxes, etc. The matrix BG encodes how the policy instruments affect the model

behavior.

A behavioral expectations equilibrium is defined as stationary time series for

Xt, Yt, and Gt, given a time series of shocks ωt, such that:

1. Xt, Yt, and Gt satisfy the equilibrium condition (1)

2. Yt = Y (L)ωt

3. Xt and Gt are linear the history of shocks {ωt−j}∞j=0

4. Gt satisfies a policy rule

Of course, this equilibrium definition is incomplete: it requires specifying a policy

rule determining Gt.

This framework is very general, but what does it rule out? First, equilibria studied

in this paper are stationary, so I cannot consider departures from rationality due to

learning, as in Evans and Honkapohja (2003) or Orphanides and Williams (2008),

among many others. Second, the behavioral expectation operator does not affect the

coefficient matrices (BX0, BX1, BY , BG). This will be true if, for example, the model

is linearized around a deterministic steady state, which is unaffected by behavioral
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expectations. Thus this is a model of dynamic mistakes, rather than steady state

biases.

2.2 Additional Assumptions

Throughout the paper, stars denote the rational expectations equilibrium of a model,

e.g. X∗
t is the solution to (1) when Eb

t is the rational expectation Et.

I assume – except when specified otherwise – that the rational expectation equi-

librium X∗
t is the welfare-maximizing equilibrium, by whatever welfare objective the

policymaker has in mind. In Section 4, the welfare objective is discussed further.

Next, assume the matrices defining equation (1) satisfy two regularity conditions:

1. The Blanchard-Kahn condition is satisfied, so that the rational expectations

equilibrium X∗
t is unique.

2. B′
GBG is invertible. This implies that there are no redundant policy instruments

that enter the model as a linear combination of other policy instruments. Al-

lowing for additional redundant instruments does not change any conclusions,

but complicates notation.

3 Optimal Policy With Sentiment Spanning

This section considers the case where the policymaker has “enough” policy instru-

ments to recover the first-best equilibrium. The technical condition is that the model

satisfies “sentiment spanning”.

When this condition is satisfied, the policymaker’s problem is easy. The optimal

policy is given by a sufficient statistic, that does not require knowing either the exact

way expectations are formed, nor the full economic model. This sufficient statistic

is linear in agents’ belief distortions, which is the difference between their forecast

and the rational expectation. For agents forecasting with behavioral expectation Eb,

define the distortion operator Db by

Db
t [Xt+1] ≡ Eb

t [Xt+1]− Et[Xt+1]

This distortion is crucial to the optimal policy because of the assumption that the

first-best equilibrium is a rational expectations equilibrium. In this section, I also
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assume that there is no policy in the first-best equilibrium, i.e. G∗
t = 0. This is a

simplification in order to focus on the role of policy to resolve the distortions due to

expectations, without the distraction from requiring policy to simultaneously address

standard economic frictions. But this assumption is easy to relax, by first solving

the traditional optimal policy problem for the rational expectations case, and then

secondly considering deviations from this policy in order to resolve the behavioral

distortions. The New Keynesian model in Section 5.2 is an example of this approach.

Additionally, the more general theoretical results in Section 4 do not impose this

assumption.

3.1 Optimal Policy and Belief Distortions

Before examining whether such a policy is feasible, first consider: what equations

must a policy satisfy if it were to recover the rational expectations equilibrium X∗
t ?

Lemma 1 provides the answer.

Lemma 1 If there is a time series of policy instruments Gt such that the non-rational

equilibrium is consistent with the policy-less FIRE equilibrium, then Gt satisfies

BGGt = BX1Db
t [Xt+1] (2)

Proof. In the FIRE equilibrium with Gt = 0, the endogenous vector X∗
t satisfies the

equilibrium conditions

BX1Et

[
X∗

t+1

]
= BX0X

∗
t +BY Yt

Subtract this equation from the non-rational equilibrium conditions (1):

BX1Eb
t [Xt+1]−BX1Et

[
X∗

t+1

]
= BX0(Xt −X∗

t ) +BGGt

Next, impose that Xt = X∗
t :

BX1Eb
t [Xt+1]−BX1Et [Xt+1] = BGGt

Then rearranging and using the belief distortion operator gives:

BGGt = BX1Db
t [Xt+1]
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The proof is straightforward, following from the equilibrium conditions after as-

suming thatXt matches the first-best equilibriumX∗
t without any policy intervention.

The crucial question remains: when does a policy satisfying equation (2) exist?

The next section answers: if the policy instruments satisfy the sentiment spanning

condition.

3.2 The Sentiment Spanning Condition

What policy instruments are needed to recover the rational expectations equilibrium?

Lemma 1 implies that the policy must offset the belief distortions Db[Xt+1]. Fortu-

nately, belief distortions only enter a subset of a model’s equilibrium conditions: the

forward-looking equations. But, beliefs might distort different equations in different

ways. In order to address all of the effects, there must be enough linearly independent

policy instruments to offset the belief distortions in the forward-looking equations

without creating new distortions in the model’s other equations. Sentiment spanning

is the technical condition that says whether this is possible.

Before stating the condition, additional notation is required. First, subdivide the

matrix BX1 ≡
(
BK1 BC1

)
into coefficients on states and controls. This is to

take advantage of the fact that agents know the next period’s state variables with

certainty:

BX1Db
t [Xt+1] = BX1Db

t

[(
0

XC
t+1

)]
= BC1Db

t [X
C
t+1]

Second, define PG ≡ BG(B
′
GBG)

−1B′
G, which is the projection matrix for the space

spanned by the columns of BG.

Condition 1 (Sentiment Spanning) The macroeconomic model defined in (1) is

said to satisfy sentiment spanning if

(I − PG)BC1 = 0

The matrix BC1 determines how belief distortions affect the model. The matrix I−PG

projects onto the space orthogonal to the set of policy instruments. Thus Condition 1

says that there is no belief distortion that cannot be offset by some linear combination

of policies.
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What information does a practitioner have to know in order to evaluate senti-

ment spanning? They do not need to know the entire model nor how expectations

are formed. They only need to know how expectations enter the forward-looking

equations (encoded in BC1) and how their policy instruments distort the economy

(encoded in BG, which determines PG).

When is sentiment spanning satisfied? The policymaker needs at least as many

policy instruments (the dimensions of Gt) that span the forward-looking equations

(the non-zero rows of BC1) as there are dimensions to the belief distortion Db
t [X

C
t+1].

For example, it is satisfied in the RBC model studied in Section 5.1, because there is

one policy instrument and a single forward-looking equation. And it is satisfied in the

New Keynesian model studied in Section 5.2, where there are two policy instruments,

two forward-looking equations, and each policy affects a different equation.

3.3 Optimal Policy: The Sufficient Statistic

If the sentiment spanning condition is satisfied, then policymakers can recover the

rational expectations equilibrium by following a simple policy rule: the measured

belief distortion Db
t [X

C
t+1] is a sufficient statistic for the optimal policy G†

t . Theorem

1 presents this result.

Theorem 1 If a model satisfies Condition 1, then there exists a policy rule that

recovers the FIRE equilibrium, and the policy rule is given by

G†
t = (B′

GBG)
−1B′

GBC1Db
t [X

C
t+1] (3)

Proof. Let X∗
t denote the equilibrium time series when agents have rational expec-

tations and there is no policy intervention. Per equation (1):

BX1Et[X
∗
t+1] = BX0X

∗
t +BY Yt

Conjecture that when Gt is given by equation (3), the behavioral equilibrium time

series satisfies Xt = X∗
t . Take the difference between equation (1) under behavioral

and rational expectations:

BX0(Xt −X∗
t ) = BX1

(
Eb

t [Xt+1]− Et[X
∗
t+1]
)
−BGGt
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Imposing the conjecture Xt+1 = X∗
t+1 gives

BX0(Xt −X∗
t ) = BX1Db

t [Xt+1]−BGGt

State variables are known exactly under both forms of expectations, so BX1Db
t [Xt+1] =

BC1Db
t [X

C
t+1]:

BX0(Xt −X∗
t ) = BC1Db

t [X
C
t+1]−BGGt

and substituting with equation (3) gives

BX0(Xt −X∗
t ) = BC1Db

t [X
C
t+1]− PGBC1Db

t [X
C
t+1]

BX0(Xt −X∗
t ) = (I − PG)BC1Db

t [X
C
t+1]

and Condition 1 implies

BX0(Xt −X∗
t ) = 0

which is consistent with the conjecture. This logic says that if Gt is given by (3),

then Xt = X∗
t is a stationary time series that satisfies equation (1) for all t, so it is a

behavioral expectations equilibrium.

Lastly, any choice of Gt does not affect the Blanchard-Kahn condition, which is

determined by the matrices BX0 and BX1. And the policy G†
t reduces the model

equations (1) to the rational expectations case with no policy:

Gt = G†
t =⇒ BX1Et [Xt+1] = BX0Xt +BY Yt

so Xt = X∗
t is the unique equilibrium.

The proof has two main steps. First, it shows that the sentiment spanning con-

dition implies that it is possible to write a policy G†
t that delivers the rational ex-

pectations equilibrium. Second, it proves that such a policy is feasible: the resulting

equilibrium would exist and be unique. This second step is simple in this case, but

will be more involved in Section 4 when sentiment spanning fails.

What do policymakers need to know in order to implement the policy G†
t? They

need to be able to measure the belief distortion Db
t [X

C
t+1], and they need to know

the same information as is necessary to evaluate sentiment spanning: BC1 and BG,

the matrices that determine how expectations enter forward-looking equations and

how their policy instruments distort the model. Thus Theorem 1 implies the belief
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distortion is a sufficient statistic for the optimal policy; in any period, the policymaker

need only measure Db
t [X

C
t+1] in order to choose G†

t .
3

4 Optimal Policy Without Sentiment Spanning

The last section demonstrated that when a model satisfies the sentiment spanning

condition, the optimal policy can recover the rational expectations equilibrium. But

what if the condition is not satisfied?

Without sentiment spanning, the policymaker’s goal is instead to get as close as

possible to the first-best equilibrium, based on some welfare-relevant metric. This

optimal policy problem loses the semi-structural property from Theorem 1; the poli-

cymaker now needs to know the whole model. But the modeling requirements are no

stronger than in the rational expectations case. The policymaker still does not need

to know how behavioral expectations are formed: they only need to measure the belief

distortion.

Moreover, the optimal policy problem is cleanly decomposed into two parts. The

first component solves the distortions to beliefs with a similar formula as in Section

3. The second component solves the economic distortion in exactly the same way

as under rational expectations. Therefore a policymaker who does not have enough

policy instruments to recover the first-best equilibrium does not actually face a harder

optimization problem: they solve the problem they would have to solve under ratio-

nal expectations anyway, and then address the belief distortion using the sufficient

statistic.

To solve the optimal policy problem without reaching the first-best equilibrium, it

is necessary to specify a welfare function. For simplicity, I focus on a standard problem

whereby the policymaker commits to a policy rule that maximizes the unconditional

expectation of some welfare function. This is commonly represented as minimizing a

quadratic loss function (Rotemberg and Woodford, 1997):

minE [(Xt −X∗
t )

′W (Xt −X∗
t )] (4)

3This result contrasts with Woodford (2010b) and Adam and Woodford (2012), who study robust
control (max-min) optimal policy responses to belief distortions in New Keynesian models. The
source of the difference is that these papers restrict attention to policy rules that are functions of
exogenous states, but not belief distortions which are allowed to move for extrinsic reasons. Theorem
1 says that the optimal policy rule is linear in the belief distortions themselves. This is one reason
why the robust control optimal policy does not recover the FIRE equilibrium.
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The matrix W encodes the policymaker’s welfare weights on unconditional covari-

ances. The rational expectations equilibrium X∗
t remains the first-best equilibrium,

so it is convenient to write this loss function in terms of deviations from X∗
t . While

I maintain the assumption that X∗
t is a rational expectations equilibrium, I drop

the simplifying assumption from Section 3 that the optimal policy under rational

expectations is zero. Rather, the FIRE optimal policy is now denoted by G∗
t .

Theorem 2 gives the solution to this second-best policy problem. In order to

express the solution, define the projection matrix PW ≡ BG

(
B′

GW̃BG

)−1

B′
GW̃ where

W̃ ≡
(
B−1

X0

)′
WB−1

X0. Sentiment spanning fails, so the matrix BG is tall; denote its

pseudo-inverse by B+
G ≡ (B′

GBG)
−1B′

G.

Theorem 2 The constrained-optimal policy rule is

G†
t = B+

GPW

(
BC1Db

t [X
C
t+1] +BX1Et[Xt+1 −X∗

t+1]
)
+G∗

t

Proof. Substitute W̃ into the objective function:

E [(Xt −X∗
t )

′W (Xt −X∗
t )] = E

[
(Xt −X∗

t )
′B′

X0W̃BX0(Xt −X∗
t )
]

= E
[
(Xt −X∗

t )
′B′

X0C
′
W̃
CW̃BX0(Xt −X∗

t )
]

using the Cholesky decomposition W̃ = C ′
W̃
CW̃ . This can be written in terms of the

policy using equation (1), which implies BX0Xt−BX0X
∗
t = −BGĜt+BX1E

b
t [Xt+1]−

BX1Et[X
∗
t+1] where Ĝt ≡ Gt −G∗

t :

= E
[
(−BGĜt +BX1Eb

t [Xt+1]−BX1Et[X
∗
t+1])

′C ′
W̃

CW̃ (−BGĜt +BX1Eb
t [Xt+1]−BX1Et[X

∗
t+1])

]

= E
[
(−BGĜt +BX1Db

t [Xt+1] +BX1Et[Xt+1 −X∗
t+1])

′C ′
W̃

CW̃ (−BGĜt +BX1Db
t [Xt+1] + Et[Xt+1 −X∗

t+1])
]
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= E
[
(−CW̃BGĜt + CW̃BC1Db

t [X
C
t+1] + CW̃BX1Et[Xt+1 −X∗

t+1]))
′

(−CW̃BGĜt + CW̃BC1Db
t [X

C
t+1] + CW̃BX1Et[Xt+1 −X∗

t+1])
]

(5)

Thus the objective is to choose Ĝt to minimize equation (5). Written this way,

it is a standard least squares minimization problem, which Ĝt solves by projecting

CW̃BC1Db
t [X

C
t+1] + CW̃BX1Et[Xt+1 −X∗

t+1] onto the space spanned by CW̃BG:

CW̃BGĜt =

CW̃BG

(
(CW̃BG)

′CW̃BG

)−1
(CW̃BG)

′ (CW̃BC1Db
t [X

C
t+1] + CW̃BX1Et[Xt+1 −X∗

t+1]
)

Left-multiply by C−1

W̃
and substitute with PW = BG

(
B′

GW̃BG

)−1

B′
GW̃ :

BGĜt = PW

(
BC1Db

t [X
C
t+1] +BX1Et[Xt+1 −X∗

t+1]
)

Finally, left-multiplying by B+
G gives

Ĝt = B+
GPW

(
BC1Db

t [X
C
t+1] +BX1Et[Xt+1 −X∗

t+1]
)

and substituting in Gt = Ĝt +G∗
t completes the proof.

The proof strategy is to find the optimal policy G†
t that minimizes the welfare-

relevant distance between the equilibrium Xt and the rational expectations counter-

factual X∗
t . This is done by projecting the expectation terms onto the space spanned

by the policy instruments. When sentiment-spanning is satisfied, this projection is

perfect: PW is the identity, and Xt+1 = X∗
t+1. Thus Theorem 1 is a special case of

Theorem 2.

The policymaker’s problem is now more involved, compared to Section 3. The

belief distortion Db
t [Xt+1] is no longer a sufficient statistic for the optimal policy. Now,

the policymaker must also evaluate the rational expectation of the economic distortion

Et[Xt+1 − X∗
t+1]. And minimizing the objective function (4) requires responding to

both the belief distortion and the economic distortion.

But this additional concern is already well understood! Let GRE
t denote the policy

following the rule that would be optimal if agents in the model (1) had rational

expectations. Corollary 1 shows that the component of G†
t that responds to the

distortion Et[Xt+1 −X∗
t+1] follows exactly the same policy rule as GRE

t .
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Corollary 1 The constrained-optimal optimal policy can be written as

G†
t = B+

GPWBC1Db
t [X

C
t+1] +GRE

t

Proof. Under rational expectations, there is no belief distortion, i.e. Db
t [Xt+1] = 0.

Per Theorem 2, the optimal policy under rational expectations is

GRE
t = B+

GPWBX1Et[Xt+1 −X∗
t+1] +G∗

t (6)

Then, for any behavioral expectation Eb
t , substitute (6) into the expression from

Theorem 2.

Corollary 1 implies that the additional policy challenge introduced by behavioral

expectations is resolved by the policy rule B+
GPWBC1Db

t [Ct+1], for which the belief

distortion is still a sufficient statistic. And the information requirements are light, as

in Section 3: the exact form of behavioral expectations do not need to be known so

long as belief distortions can be measured. However, in order to calculate the sufficient

statistic, the policymaker now has to know PW , which depends on the matrix BX0.

GRE
t follows a rational expectations policy rule. Equation (6) expresses the policy

rule as linear in the expectation of economic distortions, plus the FIRE optimal

policy G∗
t . With rational expectations, the first term B+

GPWBX1Et[Xt+1 − X∗
t+1] is

zero, because the G∗
t component ensures Xt = X∗

t under FIRE. What does this term

represent without FIRE? It is the constrained optimal policy under FIRE among

policy rules that are linear in the expected gap Et[Xt+1−X∗
t+1]. The matrix B+

GPWBX1

encodes this rational rule.

5 Examples

This section explores the sufficient statistics for optimal policy in several example

economies.4

In the quantitative exercise that follows, I consider three forms of expectations,

4The models are solved using BEET (Adams, 2024), a toolkit for dynamic models with behavioral
expectations. Optimal policy in this section is derived explicitly, but the toolkit is also capable of
calculating the optimal policy rule automatically.
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defined as:

Rational Expectations: ERE
t [xt+1] = Et[xt+1] (7)

Diagnostic Expectations: EDE
t [xt+1] = (1 + θDE)Et[xt+1]− θDEEt−1[xt+1] (8)

Cognitive Discounting: ECD
t [xt+1] = θCDEt[xt+1] (9)

Cognitive discounting is useful for resolving a number of puzzles in New Keynesian

theory (Gabaix, 2020). If θCD < 1 (as in the original calibration) forecasts underreact

to news, but θCD > 1 is also allowed, in which case forecasters “overextrapolate”

(Angeletos, Huo, and Sastry, 2021). Cognitive discounting is also a convenient choice

because it is isomorphic to simple models where agents mis-forecast due to information

frictions instead of behavioral biases (Adams, 2023a).

These examples are just a subset of possible behavioral expectations; the main

conclusions from Theorems 1 and 2 apply more generally.

5.1 A Behavioral Real Business Cycle (BRBC) Model

This section considers a standard RBC model (Kydland and Prescott, 1982) modified

so that households have behavioral expectations. The BRBC model is a convenient

initial example for two reasons. First, the rational expectations equilibrium is efficient

without any policy intervention. Second, the model has only one forward-looking

equation, so only one policy instrument is needed to satisfy sentiment spanning and

recover the efficient equilibrium.

The log-linearized model is given by:5

Euler Equation: τt = σct + Eb
t [−σct+1 +Rrt+1] (10)

Labor Supply: wt = σct + ηnt (11)

Production Function: yt = at + αkt−1 + (1− α)nt (12)

Capital Demand: rt = yt − kt−1 (13)

Labor Demand: wt = yt − nt (14)

Resource Constraint: Y yt = Cct +K (kt − (1− δ)kt−1) (15)

where uppercase constants denote steady state values, and lowercase variables denote

5Appendix B derives the log-linearized BRBC model.
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log-linearized deviations. This system of equations uniquely determines the time

series for the 6 endogenous variables (consumption ct, labor lt, output yt, capital kt,

real wage wt and real rental rate rt), given time series for capital at and the policy

instrument τt. In this setting, τt is any policy that affects the economy by creating

an “intertemporal wedge”. This could be any number of policies that only distort the

intertemporal margin (Chari, Kehoe, and McGrattan, 2007), but I will refer to τt as

an investment tax.6

This BRBC model is decentralized : it includes prices. This is purposeful for

two reasons. First, the decentralized and social planner’s models are ordinarily iso-

morphic, but this is not true with behavioral expectations, and the social planner’s

problem is usually considered an analytical convenience rather than representing a

real decisionmaker. For example, it may be that:

Eb
t [rt+1] ̸= Eb

t [yt+1 − kt]

This is because kt is known at time t, and for many behavioral expectations, the

forecast bias about yt+1 is not the same as the forecast bias about rt+1, which has

different time series properties. When writing down a behavioral macroeconomic

model, the theorist must take a stance on precisely which variables are forecasted by

agents in the model.

Second, writing the decentralized problem illustrates one of the advantages of the

sufficient statistic approach. The BRBC model has many contemporaneous equations

but only one forward-looking equation. And Theorem 1 implies that the policymaker

does not need to know all of these equations in order to conduct optimal policy: they

do not care what the production function is, or details of the labor market, etc. They

only need to know where the policy causes distortions.

In this model, the investment tax τt only distorts the Euler equation. Thus sen-

timent spanning is satisfied, so Theorem 1 implies that the policymaker can recover

the efficient equilibrium by setting BGGt = BC1Db
t [X

C
t+1]. Appendix B demonstrates

how to map the model equations to these matrices. But it is simple to see what the

optimal policy must be to offset a belief distortion:

τt = Db
t [−σct+1 +Rrt+1]

6If taken literally, the tax receipts must be returned to households as transfers so as not to distort
the budget constraint.
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The optimal investment tax responds to two mistakes. If agents are over-optimistic

and expect the return on capital investment to be too high (Db
t [Rrt+1] > 0) they

will build too much capital, so the tax needs to increase to disincentivize investment.

Conversely, if agents are over-optimistic about future consumption (Db
t [−σ∆ct+1] < 0)

then they will build too little capital, so the tax needs to decrease.7

To illustrate how this approach works in practice, Figure 1 plots impulse response

functions to a positive productivity shock in three example economies. In the first

column, agents have rational expectations. After the shock, firms are more produc-

tive, so expectations of investment returns rise (Et[Rrt+1], upper left panel). Incomes

are higher, so households consume more, and expected consumption rises (Et[ct+1],

middle left panel). The rational expectations equilibrium is efficient, so the optimal

policy is to implement no investment tax.

In the second column, agents have diagnostic expectations, parameterized with

θDE = 0.5. When the shock occurs, agents immediately over-forecast future pro-

ductivity. Thus they over-forecast investment returns (middle upper panel) and

consumption (center panel) relative to the rational expectation. But after one pe-

riod, their expectations respond rationally to the lagged shock. Without a policy

response, when the shock impacts there would not be enough investment; the income

effect dominates the substitution effect and households consume would too much

(DDE
t [σct+1] > DDE

t [Rrt+1]), so the optimal policy is to subsidize investment for a

single period (middle lower panel).

In the third column, agents follow cognitive discounting, parameterized with

θCD = 0.5. Agents’ productivity forecasts are now attenuated. Thus they under-

forecast investment returns (upper right panel) and consumption (middle right panel)

relative to the rational expectation. In contrast to diagnostic expectations, this

biased forecasting continues to occur in every period. Without policy, households

would perpetually under-consume, because they would expect low consumption in

the future; again, the income effect dominates the substitution effect (−DCD
t [σct+1] >

−DCD
t [Rrt+1]). Thus there would be too much investment, so the optimal policy is

to tax capital, and this tax remains high over the course of the economic boom.

7Even though this paper’s framework precludes some types of information frictions with endoge-
nous signals, Adams (2023b) studies optimal policy in such a setting, and comes to qualitatively
similar conclusions about capital taxation.
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Figure 1: Response of Expectations to a Productivity Shock in Three RBC Models

Each panel plots the impulse response of expectations to a productivity shock. Each column corre-
sponds to a different model of expectations: rational, diagonstic, and cognitive discounting. The first
row is forecasts of the one-period-ahead investment return Rrt+1, the second row is consumption,
and the third row is the implied optimal investment tax. In all cases, the RBC model is parame-
terized as follows: β = 0.99, σ = 1, δ = 0.02, α = 0.33, η = 1, and productivity follows an AR(1)
process with autocorrelation 0.95. The behavioral parameters are θDE = 0.5 and θCD = 0.5.
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5.2 First-Best Policy in a Behavioral New Keynesian Model

The canonical New Keynesian Model has two forward-looking equations: a Phillips

Curve and an Euler equation. Thus two policy variables will be needed to satisfy

sentiment spanning.

I modify a New Keynesian model with government spending used by Gnocchi

(2013) to study optimal monetary and fiscal policy.8 When expectations are possibly

non-rational, the log-linearized behavioral model is given by:

New Keynesian Phillips Curve: πt = κyt − ψft − zPC
t + βEb

t [πt+1] (16)

Euler Equation: σyt = −it − zEE
t + Eb

t [σyt+1 + πt+1] (17)

where inflation πt and the output gap yt are determined by exogenous processes zPC
t

and zEE
t , and the policy instruments. The central bank sets the nominal interest

rate it, while the fiscal authority chooses government spending gt to set the fiscal gap

ft = gt − yt.

In this model, the rational expectations solution is not optimal (or unique) in

the absence of a policy intervention. Let f ∗
t and i∗t denote the optimal policies un-

der rational expectations, in the style of King (2000). Then decompose the policy

instruments into the optimal choices and deviations, denoted with hats:

ft = f̂t + f ∗
t it = ît + i∗t

Written in the matrix form of equation (1), the model becomes

(
1 −κ
0 σ

)
︸ ︷︷ ︸

BX0

(
πt

yt

)
︸ ︷︷ ︸

Xt

+

(
ψ 0

0 1

)
︸ ︷︷ ︸

BG

(
f̂t

ît

)
︸ ︷︷ ︸

Gt

+

(
ψ 0 1 0

0 1 0 1

)
︸ ︷︷ ︸

BY


f ∗
t

i∗t

zPC
t

zEE
t


︸ ︷︷ ︸

Yt

=

(
β 0

1 σ

)
︸ ︷︷ ︸

BX1

Eb
t [Xt+1]

8As discussed in Section 5.1, different microfoundations and informational assumptions may lead
models that are isomorphic under rational expectations to have different log-linear representations
under behavioral expectations. This version of the behavioral model is derived in Adams (2023a),
with the addition of government spending. It differs from Gabaix (2020) – where agents mis-forecast
their incomes but correctly forecast inflation – and from L’Huillier, Singh, and Yoo (2023) where
agents mis-forecast the price level instead of the inflation rate.
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Written this way, the policies f ∗
t and i∗t are treated as exogenous stochastic processes.

This means that the model is technically indeterminate, so assume that some other

unmodeled policy choice selects the appropriate welfare-maximizing equilibrium.9

This model has two forward looking equations and one policy instrument that

affects each: the sentiment spanning condition is satisfied.10 Therefore, Theorem 1

says a policy following G†
t = B−1

G BX1Db
t [Xt+1] can recover the rational expectations

equilibrium. This optimal policy is:

f̂ †
t =

β

ψ
Db

t [πt+1] î†t = Db
t [πt+1 + σyt+1] (18)

The optimal interest rate policy says that if agents’ forecasts of income are too

high (Db
t [yt+1] > 0), they will mistakenly consume too much today, so the central

bank should raise interest rates to reduce aggregate demand.

However, if agents’ forecasts of inflation are too high (Db
t [πt+1] > 0), this causes

two different problems. First, this lowers expectations of the real interest rate, raising

aggregate demand, so the central bank needs to respond by raising the nominal rate.

Second, the inflation mis-forecast distorts price-setting through the Phillips Curve,

which is not directly affected by monetary policy. Expecting high future inflation,

firms would like to set prices to raise inflation immediately; this needs to be offset

by increasing the fiscal gap f̂t, which lowers inflation in the Gnocchi (2013) model by

lowering marginal costs.

Figure 2 demonstrates how straightforward these optimal policies are to imple-

ment. The first two panels plot the inflation and real income belief distortions in the

data. These belief distortions are calculated by Adams and Barrett (2024), who take

household expectations from the Michigan Survey of Consumers and remove a ratio-

nal expectation estimated from a semi-structural VAR. These two belief distortions

are very negatively correlated: households’ average expectations of inflation and nom-

inal income have low correlation, so their implied expectations of real income tend to

fall when their forecasts of inflation rise.

The remaining panels plot the policies implied by the optimal rule. These are not

9This could be some off-equilibrium threat by the central bank such as a Taylor rule it = i∗t +
ϕ(πt − π∗

t ) with ϕ sufficiently large (King, 2000), an appropriate fiscal policy (Cochrane, 2023), or
an arbitrarily small departure from perfect memory (Angeletos and Lian, 2023).

10Mathematically: BG is invertible, so the policy dimensions span the endogenous variable dimen-
sions, i.e. I −BG(B′

GBG)−1B′
G = 0.
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Figure 2: Estimated Belief Distortions and Implied Policies

From top to bottom, the panels plot the inflation belief distortion Db[πt+1], income belief distortion
Db[yt+1], nominal interest rate it, and fiscal gap ft. Belief distortions are calculated as in Adams
and Barrett (2024). Policies are calculated per equation (18). In all cases, the units are percentage
point deviations from trend. The plot truncates before the COVID pandemic, when very large belief
distortions dwarf the preceding time series.
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counterfactuals : if the policy rule were implemented, the equilibrium belief distortions

could change. Rather, these time series demonstrate how tractable the optimal policy

is to estimate and calculate.

The third panel (green series) plots the nominal interest rate deviation implied

by the optimal policy rule and the measured belief distortions. Equation (18) is

parameterized as in Gnocchi (2013): β = 0.99, σ = 1, ψ = 0.03. When agents mis-

forecast the economy as too hot (both belief distortions positive), the prescription for

monetary policy is to tighten: for example, this occurs from 2000-2007. When the

belief distortions move in different directions, it depends on which one dominates: for

example, in the 1982 recession, inflation belief distortions are somewhat positive but

income belief distortions are very negative, so monetary policy needs to loosen.

The fourth panel (maroon series) plots the implied optimal fiscal gap. Per equation

(18), optimal fiscal policy only depends on the inflation belief distortion, so this

series mirrors the blue series. To be clear, these are not counterfactual policies. If

the optimal policy rule were actually implemented, all four of these time series will

change. To calculate counterfactuals would require taking a stance on the actual form

of behavioral expectations in this economy. But following the optimal policy rule only

requires measuring the belief distortions.

A consequence of this calibration is that implied fiscal policy is extremely volatile.

In this model, government spending affects the Phillips Curve by increasing labor

supply through an income effect, and thus reducing marginal costs. But the elasticity

of this channel is low, and a policymaker may not be willing or able to stabilize

inflation by such large swings in fiscal policy. Therefore the next section considers

the case where only monetary policy is available to respond to belief distortions.

5.3 Constrained-Optimal Policy in a Behavioral New Key-

nesian Model

The sentiment spanning condition was satisfied in the previous section because both

monetary and fiscal policy were available to stabilize the economy. What does optimal

policy look like if this condition fails and the sufficient statistic from Theorem 1 cannot

be applied?

To study this case, suppose that only monetary policy is available to respond to

belief distortions. Now, the only policy decision is to choose the interest rate process
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it.

The policymaker’s objective is to choose a rule for interest rates that maximizes

the unconditional expectation of consumer welfare. Rotemberg and Woodford (1997)

derive the quadratic approximation of welfare wt in this economy:

E[wt] = bπV ar(πt) + byV ar(yt)

where V ar(·) denotes the unconditional variance, and the positive coefficients bπ and

by are functions of the model parameters. Mapping this objective to the loss function

defined in (4), the policymaker’s goal is

minE

[(
πt − π∗

t

yt − y∗t

)′ (
bπ 0

0 by

)
︸ ︷︷ ︸

W

(
πt − π∗

t

yt − y∗t

)]

which follows from π∗
t = y∗t = 0. Proposition 1 gives the solution to this problem,

where again i∗t denotes the FIRE-optimal interest rate.

Proposition 1 The constrained-optimal monetary policy rule is

i†t =

(
1− β

bπκσ

bπκ2 + by

)(
Db

t [πt+1] + Et[πt+1 − π∗
t+1]
)

+ σ
(
Db

t [yt+1] + Et[yt+1 − y∗t+1]
)
+ i∗t (19)

Proof: Appendix A.1

This policy rule is more complicated than in Section 5.2. However, Corollary 1

says that there is a simpler, more intuitive way of representing it. In the absence

of any distortion caused by behavioral expectations, the second best policy can be

written as

iRE
t =

(
1− β

bπκσ

bπκ2 + by

)
Et[πt+1 − π∗

t+1] + σEt[yt+1 − y∗t+1] + i∗t

Therefore the optimal policy is concisely written using its deviation from the rational

expectations policy rule:

i†t − iRE
t =

(
1− β

bπκσ

bπκ2 + by

)
Db

t [πt+1] + σDb
t [yt+1] (20)
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In contrast to the first best solution (18), this second-best solution includes ad-

ditional dependence on the inflation belief distortion. The −β bπκσ
bπκ2+by

Db
t [πt+1] term

attempts to correct for the distortion to price-setting that fiscal policy would resolve

if it were available. This term is more important when prices are especially sticky (κ

large) and when inflation is given more weight in the welfare function (bπ large).

In typical applications, the difference between the first-best interest rate rule and

the constrained-optimal rule is small. β bπκσ
bπκ2+by

is usually close to zero because κ is

thought to be small. Thus, the data-implied policy rule nearly exactly follows the time

series plotted in Figure 2. However, if the policymaker only cared about stabilizing

inflation (by ≈ 0), the coefficient on inflation could become negative; indeed, this

is the case for the Gnocchi (2013) calibration, where bπ
by

≈ 17. In contrast, if they

only cared about stabilizing the real economy (bπ = 0) they could do so by solely

using interest rates to resolve the distortion to the Euler equation; in this case, the

coefficients on the belief distortions are the same as in Section 5.2.

To illustrate how the constrained-optimal monetary policy works in practice, con-

sider the effect of “cost-push” shocks to the Phillips curve, i.e. shocks to zPC
t . Mirror-

ing the BRBC analysis, Figure 3 plots impulse response functions to a cost-push shock

in three example economies with different types of expectations. Unlike the BRBC

model, sentiment spanning is not satisfied: monetary policy alone is insufficient to

offset the distortions caused by behavioral expectations, so the rational expectation

(gray lines) now vary across the three economies.

In the first column, agents have rational expectations, and the cost-push shock has

its usual effect. The shock causes firms to raise prices (upper left panel). The central

bank optimally responds by raising nominal rates, engineering a recession (middle left

panel). The central bank is willing to tolerate the loss of income because it reduces

inflation, although not enough to entirely offset the shock. The third row plots the

optimal policy rule’s implied response of interest rates. The rational component iRE
t

resolves the economic distortion as well as possible. When agents are rational, the

belief distortion component ît (dotted line) is zero.

In the second column, agents have diagnostic expectations, parameterized with

θDE = 0.5. When the shock occurs, agents are immediately too pessimistic: they

over-forecast future inflation (middle upper panel) and under-forecast income (center

panel) relative to the rational expectation. But this belief distortion only last for one

period; their expectations are rational thereafter. The third row plots the optimal
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Figure 3: Response of Expectations to a Cost-Push Shock in Three NK Models

Each panel plots the impulse response of expectations to a cost-push shock. Each column corresponds
to a different model of expectations: rational, diagnostic, and cognitive discounting. The first row
is forecasts of the inflation rate πt+1, the second row is forecasts of income yt+1, and the third row
is the implied optimal interest rate i†t . In all cases, the BNK model is parameterized as follows:
β = 0.99, σ = 1, κ = 0.08, ψ = 0.03, by = bπ = 0.5, and productivity follows an AR(1) process with
autocorrelation 0.9. The behavioral parameters are θDE = 0.5 and θCD = 0.5.
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response of interest rates. As before, the rational component rises to offset the boom-

ing inflation, per the standard optimal policy rule. But now, agents have non-zero

belief distortions, so the belief distortion component must also move. Agents forecast

inflation to be too hot (which should imply a monetary tightening) but also forecast

income to be too low (which should imply loosening). These incentives somewhat

offset, but the income distortion dominates in the example calibration with equal

welfare weights by = bπ = 0.5. The belief distortion component of monetary policy

loosens slightly, but only for the one period that forecasts are distorted.

In the third column, agents follow cognitive discounting, parameterized with

θCD = 0.5. Agents’ cost-push forecasts now attenuated. Thus they under-forecast

inflation (upper right panel) and over-forecast income (middle right panel) relative

to the rational expectation. Because this biased forecasting continues to occur in

every period, the monetary policy response to the belief distortions continues as well.

Again, optimal policy responds primarily to offset the income belief distortion. The

attenuated forecasts imply that agents’ income belief distortion is positive, so the

belief distortion component of monetary policy is contractionary.

These examples demonstrate that the belief distortion component of policy may

either offset or reinforce the standard policy response to a shock. The direction de-

pends on whether the behavioral bias amplifies the effect of a shock on expectations

– as in the diagnostic expectations case – or attenuates the effect of a shock on expec-

tations – as in the cognitive discounting case. The simplicity of the sufficient statistic

is useful because the size of this under- or overreaction is all the policymaker needs

to know. This is true even when the expectations are more complicated: Angeletos,

Huo, and Sastry (2021) argue that forecasts overreact and underreact at different

horizons. The implication for optimal policy is straightforward: policy should also

overreact and underreact at those horizons, relative to the rational component.

6 Extensions

This section explores the consequences of relaxing some assumptions made in Section

2’s general model. Section 6.1 drops the assumption that the policymaker perfectly

observes the belief distortion, and Section 6.2 drops the assumption that the policy

rule does not affect expectation formation.
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6.1 Measurement Error

Thus far, the policymaker has been able to observe the belief distortion. But a

reasonable concern is that the measured belief distortion contains error. This could be

due to measurement error in surveyed expectations, or specification error in estimating

the rational expectation.

Fortunately, the main conclusions from Section 4 are robust to the existence of

measurement error. Theorem 3 states this result formally.

Assume now that the policymaker’s observation Dt of the belief distortion is given

by

Dt = ξDb
t [Xt+1] + υt

with i.i.d. measurement error υt ∼ N(0, σ2
υ) and constant coefficient matrix ξ.11 The

measurement error may prevent recovery of the FIRE equilibrium even if sentiment

spanning were to hold. Therefore it is necessary to choose a welfare function (4) as

in Section 4, and I do not assume Condition 1 (Sentiment Spanning) in the results

that follow.

Let D̂t denote the policymaker’s nowcast of the belief distortion Db
t [X

C
t+1] condi-

tional on their measurement and other observables:

D̂t = E[Db
t [X

C
t+1]|Ωt]

where Ωt ≡ {Dt, Gt, G
∗
t , Xt, X

∗
t , Yt,Et[Xt+1],Et[X

∗
t+1],Ωt−1} denotes the policymaker’s

information set at time t.

Theorem 3 states that the optimal policy under measurement error is to use this

nowcast D̂t in place of the true belief distortion from Theorem 2’s policy rule.

Theorem 3 When there is measurement error on the belief distortion, the constrained-

optimal policy rule is

G†
t = B+

GPW

(
BC1D̂t +BX1Et[Xt+1 −X∗

t+1]
)
+G∗

t

where D̂t is the belief distortion nowcast.

11The assumption that υt is independent of the other exogenous process Yt implies that if the
error is due to estimating the rational expectation, the source is due to the inclusion of erroneous
independent predictors. Errors due to misspecification of endogenous regressors are instead encoded
in the matrix ξ.
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Proof: Appendix A.2

The proof follows the logic from Theorem 2 closely, except it replaces the true

belief distortion with the sum of the nowcast and the nowcast error. Orthogonality of

the error to the remaining time t observables implies that only the nowcast remains

in the least-squares welfare objective.

6.2 Endogenous Expectation Operators

In previous sections, the behavioral expectation operator Eb[·] was assumed to be

given as a primitive of the model. Adams (2023a) demonstrates that this assumption

characterizes many forms of behavioral expectations and simple information frictions.

If instead the expectation operator were endogenously determined, then changing

policy can change how belief distortions behave.12 How does this possibility affect

the optimal policy rule?

The main conclusions of the paper hold: the belief distortion is still a sufficient

statistic for optimal policy. But an optimal rule may not be unique or even exist.

6.2.1 Endogenous Expectation Operators: Discussion

In this section, the behavioral expectation Eb
t [Xt+1;G] and belief distortion Db

t [Xt+1;G]
are now functions of the policy rule G. Otherwise, I return to the environment from

Section 3: Sentiment Spanning holds, and the optimal policy under FIRE is G∗
t = 0.

What goes wrong if the expectation operator is endogenous? Not Lemma 1: if

there exists a policy Gt that recovers the FIRE equilibrium, it must satisfy

BGGt = BX1Db
t [Xt+1;G]

When Sentiment Spanning holds, the belief distortions are spanned by the policy

vector. The policy rule stated in Theorem 1 (equation 3) still gives the optimal

policy:

G†
t = (B′

GBG)
−1B′

GBC1Db
t [X

C
t+1;G] (21)

This is just a result of matrix multiplication, so it follows from Lemma 1 even when

the expectation operator is endogenous.

12This would be the case in models such as Lucas (1972). Adams (2023b) studies an optimal
taxation problem in such a setting.
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But Theorem 1 itself does not necessarily hold, because it states that a unique G†
t

must exist. And this is not true if Eb[·;G] is affected by policy; there is no guarantee

that there exists a unique fixed point such that equation (21) holds with a rule G that

generates G†
t . Instead, with an endogenous expectation operator, G†

t is the optimal

policy only if there exists a policy that recovers FIRE, and it may not be unique.

6.2.2 Endogenous Expectation Operators: Noisy Signals Example

To demonstrate, I proceed by laying out a simple example with incomplete informa-

tion and learning from endogenous signals. When signal processes are endogenous, it

introduces a non-linearity, which can lead to multiplicity or non-existence in models

that would otherwise be linear and well-behaved were the signals entirely exogenous.

In this example, agents learn from policymakers’ decisions, which changes how they

form expectations. Equation (3) gives the optimal policy except in extreme cases

where no optimal policy exists.

Agents attempt to nowcast a common fundamental φt ∼ N(0, σ2
φ). There is a

unit measure of agents, indexed by i ∈ I. Agent i makes an action xi,t based on their

nowcast, and perturbed by the policy gt:

xi,t = gt + Ei,t[φt]

Agents do not observe the aggregates φt or gt when forming their nowcast (even

though gt affects their action xi,t directly). Instead, agent i observes the noisy signals

si,t = φt + ϵi,t zi,t = gt + νi,t

with i.i.d. noise ϵi,t ∼ N(0, σ2
ϵ ) and νi,t ∼ N(0, σ2

ν) satisfying σ
2
ϵ > 0 and σ2

ν ≥ 0.

The policymaker observes φt: in this example, the FIRE nowcast of φt is the actual

realization. The policymaker cares only about the average agent; their objective is

for the average action xt ≡
∫
i∈I xi,tdi to select the FIRE nowcast:

x∗t = φt

If agents did not observe the policy signal zi,t, then their forecasting would have

a representation as a behavioral expectation operator (Adams, 2023a). But because

zi,t is endogenous, the policy choice affects how agents forecast, and the assumptions
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for Theorem 1 do not hold. Proposition 2 describes exactly how the theorem can fail:

the optimal policy rule may not exist, but if it does, it is given by equation (3).

Proposition 2 The noisy signals model has a unique optimal policy g†t – for which

the belief distortion is a sufficient statistic – if agents observe the policy with noise

(σ2
φ > 0):

g†t = −(Et[φt]− φt)

but no optimal policy exists if agents observe the policy exactly (σ2
φ = 0).

Proof: Appendix A.3

If agents observe the policy gt with noise, then they have two noisy signals and

cannot perfectly nowcast the fundamental φt. The optimal policy then offsets this

error, following the rule implied by Theorem 1.

But Theorem 1 itself does not hold: the optimal policy may not exist. This hap-

pens when agents observe the policy gt exactly. If the policy rule is non-zero, agents

can infer the fundamental φt, so the policymaker would prefer not to intervene. How-

ever, if they choose a policy rule that does not respond to φt, then agents mis-forecast,

and the policymaker would prefer to intervene. In this example the policymaker can

choose a rule that gets arbitrarily close to the optimal action x∗t = φ, but cannot

achieve it exactly.

7 Conclusion

This paper has demonstrated that policymakers can resolve the distortions due to

non-rational expectations with a simple policy rule, for which the belief distortion

is a sufficient statistic. This implies that policymakers should devote resources to

measuring belief distortions.

Progress is already being made on this front. New surveys of expectations have

proliferated in recent years, and research on the empirical properties of behavioral

expectations is accelerating. With quality measurements of agents’ forecasts in hand,

the belief distortion only requires estimating the rational expectation. This can be

done in a variety of ways. A simple method is to incorporate forecasts in a VAR

(Adams and Barrett, 2024), but more robust methods can apply machine learning

and microdata (Bianchi, Ludvigson, and Ma, 2022). Alternatively, a structurally-

inclined economist might take the rational expectation from a fully specified model.
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However, these belief distortion measures are not yet being appropriately applied

to policy. For example, Adams and Barrett (2024) show that the Federal Reserve

lowers interest rates when inflation belief distortions rise, in contrast to the policy

prescribed by Section 5.2. The findings from this paper will allow policymakers to

tractably respond to the belief distortions that they now observe.
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A Additional Proofs

A.1 Proof of Proposition 1

Proof. Theorem 2 gives the formulaG†
t = B+

GPW

(
BC1Db

t [X
C
t+1] +BX1Et[Xt+1 −X∗

t+1]
)
+

G∗
t . The coefficient matrices on the belief distortions are derived as follows. The pol-

icy instrument is now only Gt = it, and its coefficient matrix is

BG =

(
0

1

)

The modified weighting matrix W̃ = (B−1
X0)

′WB−1
X0 is

W̃ =

(
1 0

−κ
σ

1
σ

)(
bπ 0

0 by

)(
1 −κ

σ

0 1
σ

)
=

(
bπ −bπ κ

σ

−bπ κ
σ

bπ
κ2

σ2 + by
1
σ2

)

The projection matrix PW is

PW = BG

(
B′

GW̃BG

)−1

B′
GW̃

=

(
0

1

)((
0 1

)
W̃

(
0

1

))−1 (
0 1

)
W̃

=

(
0

1

)(
bπ
κ2

σ2
+ by

1

σ2

)−1 (
−bπ κ

σ
bπ

κ2

σ2 + by
1
σ2

)

=

(
0 0

−bπκσ
bπκ2+by

1

)
Then Theorem 2 implies the policy satisfies

Gt = (B′
GBG)

−1B′
GPWBX1

(
Db

t [Xt+1] + Et[Xt+1 −X∗
t+1]
)
+G∗

t

Substituting in BX1 =

(
β 0

1 σ

)
and (B′

GBG)
−1B′

G =
(

0 1
)
implies

i†t =
(

−bπκσ
bπκ2+by

1
)( β 0

1 σ

)(
Db

t [Xt+1] + Et[Xt+1 −X∗
t+1]
)
+ i∗t
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=

(
1− β

bπκσ

bπκ2 + by

)(
Db

t [πt+1] + Et[πt+1 − π∗
t+1]
)

+ σ
(
Db

t [yt+1] + Et[yt+1 − y∗t+1]
)
+ i∗t

A.2 Proof of Theorem 3

Proof. Substitute B′
X0C

′
W̃
CW̃BX0 = W into the objective function:

E [(Xt −X∗
t )

′W (Xt −X∗
t )] = E

[
(Xt −X∗

t )
′B′

X0C
′
W̃
CW̃BX0(Xt −X∗

t )
]

This can be written in terms of the policy using equation (1), which implies BX0Xt−
BX0X

∗
t = −BGĜt +BX1E

b
t [Xt+1]−BX1Et[X

∗
t+1] where Ĝt ≡ Gt −G∗

t :

= E
[
(−BGĜt +BX1Eb

t [Xt+1]−BX1Et[X
∗
t+1])

′C ′
W̃
CW̃ (−BGĜt +BX1Eb

t [Xt+1]−BX1Et[X
∗
t+1])

]
Rewriting with the belief distortion gives equation (5):

= E
[
(−CW̃BGĜt + CW̃BC1Db

t [X
C
t+1] + CW̃BX1Et[Xt+1 −X∗

t+1]))
′

(−CW̃BGĜt + CW̃BC1Db
t [X

C
t+1] + CW̃BX1Et[Xt+1 −X∗

t+1])
]

Next, break the belief distortion into the nowcast D̂t and error Db
t [X

C
t+1]− D̂t:

= E
[
(−CW̃BGĜt + CW̃BC1(Db

t [X
C
t+1]− D̂t) + CW̃BC1D̂t + CW̃BX1Et[Xt+1 −X∗

t+1]))
′

(−CW̃BGĜt + CW̃BC1(Db
t [X

C
t+1]− D̂t) + CW̃BC1D̂t + CW̃BX1Et[Xt+1 −X∗

t+1])
]

The error Db
t [X

C
t+1]− D̂t is orthogonal to all other time t variables, so the expression

reduces to

= E
[
(−CW̃BGĜt + CW̃BC1D̂t + CW̃BX1Et[Xt+1 −X∗

t+1]))
′

(−CW̃BGĜt + CW̃BC1D̂t + CW̃BX1Et[Xt+1 −X∗
t+1])

]
(22)

Thus the objective is to choose Ĝt to minimize equation (22). Ĝt solves this stan-
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dard least squares minimization problem by projecting CW̃BC1D̂t+CW̃BX1Et[Xt+1−
X∗

t+1] onto the space spanned by CW̃BG:

CW̃BGĜt = CW̃BG

(
(CW̃BG)

′CW̃BG

)−1
(CW̃BG)

′
(
CW̃BC1D̂t + CW̃BX1Et[Xt+1 −X∗

t+1]
)

Left-multiply by C−1

W̃
and substitute with PW = BG

(
B′

GW̃BG

)−1

B′
GW̃and B+

G :

Ĝt = B+
GPW

(
BC1D̂t +BX1Et[Xt+1 −X∗

t+1]
)

and substituting in Gt = Ĝt +G∗
t completes the proof.

A.3 Proof of Proposition 2

Proof. Conjecture a policy rule gt = αφt; α must be solved for. Given α, an agent

observes two noisy signals of φt:

si,t = φt + ϵi,t z̃i,t ≡
zi,t
α

= φt +
νi,t
α

There are two cases to consider: σ2
ν > 0 and σ2

ν = 0.

Case 1: Agents observe the policy with noise (σ2
ν > 0). The nowcast of φt given

these two noisy signals is

E[φt|si,t, z̃i,t] =
v(si,t)cov(z̃i,t, φt)− cov(z̃i,t, si,t)cov(si,t, φt)

v(z̃i,t)v(si,t)− cov(z̃i,t, si,t)2
z̃i,t

+
v(z̃i,t)cov(si,t, φt)− cov(z̃i,t, si,t)cov(z̃i,t, φt)

v(z̃i,t)v(si,t)− cov(z̃i,t, si,t)2
si,t

Substituting for the variances gives

=

(
σ2
φ + σ2

ϵ

)
cov(z̃i,t, φt)− cov(z̃i,t, si,t)cov(si,t, φt)(

σ2
φ + σ2

ν/α
2
) (
σ2
φ + σ2

ϵ

)
− cov(z̃i,t, si,t)2

z̃i,t

+

(
σ2
φ + σ2

ν/α
2
)
cov(si,t, φt)− cov(z̃i,t, si,t)cov(z̃i,t, φt)(

σ2
φ + σ2

ν/α
2
) (
σ2
φ + σ2

ϵ

)
− cov(z̃i,t, si,t)2

si,t
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and substituting for the covariances gives

=

(
σ2
φ + σ2

ϵ

)
σ2
φ − σ4

φ(
σ2
φ + σ2

ν/α
2
) (
σ2
φ + σ2

ϵ

)
− σ4

φ

z̃i,t +

(
σ2
φ + σ2

ν/α
2
)
σ2
φ − σ4

φ(
σ2
φ + σ2

ν/α
2
) (
σ2
φ + σ2

ϵ

)
− σ4

φ

si,t

=
α2σ2

ϵσ
2
φ

α2σ2
ϵσ

2
φ + σ2

νσ
2
ϵ + σ2

νσ
2
φ

z̃i,t +
σ2
νσ

2
φ

α2σ2
ϵσ

2
φ + σ2

νσ
2
ϵ + σ2

νσ
2
φ

si,t

When si,t is noisy (σ2
ϵ large) the nowcast puts most weight on z̃i,t; when z̃i,t is noisy

(σ2
ν/α

2 large) the nowcast puts most weight on si,t.

The average nowcast Et[φt] ≡
∫
i∈I Ei,t[φt]di is

Et[φt] =
α2σ2

ϵσ
2
φ + σ2

νσ
2
φ

α2σ2
ϵσ

2
φ + σ2

νσ
2
ϵ + σ2

νσ
2
φ

φt

so the average action is

xt = gt + Et[φt] (23)

= αφt +
α2σ2

ϵσ
2
φ + σ2

νσ
2
φ

α2σ2
ϵσ

2
φ + σ2

νσ
2
ϵ + σ2

νσ
2
φ

φt

The policymaker’s goal is to choose α such that xt = φt. This implies that α solves

the cubic

0 = α3σ2
ϵσ

2
φ + α(σ2

νσ
2
ϵ + σ2

νσ
2
φ)− σ2

νσ
2
ϵ

which has a unique solution. The optimal policy sets xt = φt, so equation (23) implies

it proportional to the belief distortion:

gt = −(Et[φt]− φt)

which is this model’s special case of the general optimal policy rule in equation (3).

Case 2: Agents observe the policy exactly (σ2
ν = 0). Then, agents’ forecast

depends on α: if α is non-zero, observing the policy reveals φt. But if α = 0, then

the policy signal is uninformative and agents nowcast using only the noisy signal si,t:

E[φt|si,t] =
σ2
φ

σ2
φ+σ2

ϵ
si,t. Thus the average expectation is

Et[φt] =

φt α ̸= 0
σ2
φ

σ2
φ+σ2

ϵ
φt α = 0
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and the average action is

xt =

(α + 1)φt α ̸= 0
σ2
φ

σ2
φ+σ2

ϵ
φt α = 0

There is no possible α such that xt = φt: the optimal policy recovering FIRE does

not exist.

B Deriving the Behavioral RBC Model

This section derives the behavioral RBC model equations of Section 5.1 from micro-

foundations.

The representative household’s problem is represented by the Bellman equation

V (K;A) = max
C,N,K′

C1−σ − 1

1− σ
− χ

N1+η

1 + η
+ βEb [V (K ′;A′)|A]

s.t. RK +WN = C +Q(K ′ − (1− δ)K)

The household’s endogenous state variable is capital K which depreciates by a factor

1− δ. The household’s budget constraint is real: it earns RK from renting its capital

to firms at rate R, and it earns WN form working N hours at wage W ; it spends

its income to purchase consumption C (the numeraire) and acquire new capital at

cost Q. The vector Z includes exogenous state variables, policy, and prices, which

atomistic households take as exogenous. Eb represents the household’s behavioral

expectation, and primes denote the next period’s values.

The household’s problem is solved by a labor supply equation

χNη = WC−σ (24)

and an Euler equation

C−σ = βEb
[
(C ′)

−σ
(R′ + 1− δ)

]
(25)

The Euler equation can be derived as usual because Eb is assumed to be linear: the

partial derivative operator passes through it, so that ∂
∂B′Eb [V (B′;Z ′)|Z] = Eb

[
∂

∂B′V (B′;Z ′)|Z
]

Output Y is produced by competitive firms with constant returns to scale pro-
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duction functions. The representative firm produces output Y by

Y = AKαN1−α (26)

with TFP A exogenously given and the capital share α ∈ (0, 1). The firm hires capital

and labor from the household, implying the demand functions:

W = (1− α)
Y

N
(27)

R = α
Y

K
(28)

The resource constraint for the economy is

Y = C +Q(K ′ − (1− δ)K) (29)

Log-linearizing the equilibrium conditions (24)-(29) is mostly standard, with one

exception: the capital price Q is set by the policymaker. Normalize around a steady

state of Q = 1 and denote the log deviation by τ to measure the tax-induced markup

over the steady state value. This gives the log-linearized equations from Section 5.1;

when written in the matrix form of equation (1), they are:

0 −σ 0 0 0 0

0 −σ −η 0 1 0

−α 0 −(1− α) 1 0 0

1 0 0 −1 0 1

0 0 1 −1 1 0

K(1− δ) −C 0 Y 0 0


︸ ︷︷ ︸

BX0



kt−1

ct

nt

yt

wt

rt


︸ ︷︷ ︸

Xt

+



1

0

0

0

0

0


︸ ︷︷ ︸

BG

τt︸︷︷︸
Gt

+



0

0

−1

0

0

0


︸ ︷︷ ︸

BY

at︸︷︷︸
Yt

=



0 −σ 0 0 0 R

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−K 0 0 0 0 0


︸ ︷︷ ︸

BX1

Eb
t





kt

ct+1

nt+1

yt+1

wt+1

rt+1




︸ ︷︷ ︸

Xt

(30)
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The relevant steady state values are calculated as follows. Equation (25) in the

steady state is

1 = β
(
R + 1− δ

)
=⇒ R =

1

β
− 1 + δ

I choose χ such that N = 1, and normalized A = 1. Then equation (26) implies that

steady state output and capital are related by

Y = K
α

Plugging this into the steady state capital demand (28) gives capital in terms of R:

K =

(
α

R

) 1
1−α

Finally, the steady state resource constraint (29) gives steady state consumption from

the preceding values by

C = Y − δK

C Mapping to the General Model

The general model from Section 2 is

BX1Eb
t [Xt+1] = BX0Xt +BY Yt +BGGt

where the vector Xt =

(
XK

t−1

XC
t

)
contains pre-determined states in XK

t−1 and con-

temporaneous controls in XC
t . The behavioral expectation Eb

t [Xt+1] only applies to

the future controls; time t-dated variables are forecasted exactly.

This model nests alternative structures, but some care must be taken to map one

to another. Consider instead a behavioral modification of the general model studied

in Uhlig (2001):

Ẽt[Fct+1 +Gc
1ct +Gk

1kt +Myt+1 +N1yt] +Gc
2ct +Gk

2kt +Hkt−1 +N2yt = TGt (31)
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ct and kt denote endogenous variables determined at time t, yt denotes exogenous vari-

ables, and Gt denotes the policy instruments. ct represent controls whose forecasts

enter the model, while kt represent states whose lags enter the model. The behav-

ioral expectations operator Ẽt[·] can be applied to some current period variables and

exogenous variables in addition to xt+1. This operator has the unique notation Ẽ to

clarify that it does not share all the properties of the other behavioral expectations

considered in this paper. I assume that when Ẽt[·] is applied to a t+ 1 variable, it is

equivalent to the usual behavioral expectation operator Eb
t [·].

In what follows, I show that the alternative model (equation 31) can be rewritten

in the general form (equation 1).

Define the new variable zt:

zt = Gc
1ct +Gk

1kt−1 (32)

and Yt:

Yt = −N2yt − Ẽt[Myt+1 +N1yt]

which allows equation (31) to be rewritten as

Ẽt[Fct+1 + zt+1] +Gk
2kt = −Gc

2ct −Hkt−1 + Yt + TGt (33)

Combine equations (32) and (33) with matrices:

(
Gk

2 F I

0 0 0

) kt

Eb
t [ct+1]

Eb
t [zt+1]

 =

(
−H −Gc

2 0

Gk
1 Gc

1 −I

) kt−1

ct

zt

+

(
I

0

)
Yt+

(
T

0

)
Gt

which matches the general form, where XK
t = kt, X

C
t =

(
ct

zt

)
, and

(
Gk

2 F I

0 0 0

)
= BX1

(
−H −Gc

2 0

Gk
1 Gc

1 −I

)
= BX0

(
I

0

)
= BY

(
T

0

)
= BG
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